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Abstract: - The fast Fourier transform (FFT) based numerical method for thin film magnetization problems in 

type-II superconductivity has been proposed by Vestgården and Johansen [Supercond. Sci. Technol. Vol. 25, 

2012, 104001]. Our work significantly improves the efficiency of their method and extends it to 3D 

magnetization problems for bulk superconductors and to stacks of flat thin superconducting films of arbitrary 

shape, the two configurations of interest for a variety of practical applications. The method is efficient, allows 

for a highly nonlinear current–voltage relation characterising the superconducting material, and is much easier 

to implement than the recently proposed approaches based upon the finite element methods. We present 

solutions to two realistic bulk problems, where superconductors are employed for magnetic shielding and as a 

magnetic field concentrator (a lens). A rescaled solution to a few-film-stack problem was used to obtain an 

accurate approximation to the anisotropic homogenization limit of magnetization of a densely packed stack of 

many films.   

 

Key-Words: - Type-II superconductivity; numerical solution; 3D magnetization problems; fast Fourier 

transform. 

 

1 Introduction 
Macroscopically, magnetization of type-II 

superconductors (SC) is well described by the eddy 

current model with a highly nonlinear current–

voltage relation. Numerical simulations based on 

such a model help to understand the peculiarities of 

magnetic flux penetration into a superconductor and 

are necessary to design superconductor-based 

devices for electronic and electric power 

applications. Several finite element methods where 

proposed for 3D magnetization problems (see, e.g., 

the recent works [1-2] and the references therein). 

Here we consider an alternative approach, extending 

to such problems the 2D FFT-based method [3]; for 

more details see our works [4-6]. 

 

 

2 Bulk Superconductors  
2.1 Magnetic Field Formulation 

Let 3R  be the domain occupied by a 

superconductor,  - its boundary, and j  - the 

current density satisfying 0 =j  in   and having 

a zero normal component, n 0j = , on  . For 

simplicity, we will restrict our consideration to the 

contourwise simply connected domains, assume the 

applied external magnetic field e ( )th  is uniform and 

=j 0  in ( )3
out \R =  . As is most often 

done, we assume the electric field e  and the current 

density j  in the superconductor are parallel and 

(| |) ,=e j j                             (1) 

where ( )
1

0 c c| | ( / ) /
n

e j j
−

=j j  is the nonlinear 

resistivity, the power n  and

 

the critical current 

density cj  are constant, and 4
0 10e −= Vm-1.           

By the Biot-Savart law 

  e [ ],= +h h Φ j                        (2) 

where 3[ ] ( ) ( , )d
R

G t  =  −Φ j r r j r r , ( , , )x y z=r , 

and 1( ) (4 | |)G  −=r r  is the Green function. 

To formulate an evolutionary problem for the 

magnetic field we need also the Faraday law  

0 = −h e ,                         (3) 

where 0  is the magnetic permeability of vacuum 

and a dot above a variable means the time 

derivative. Let at time t  the magnetic field h  be 

known. Then  

=j h                                (4) 
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and electric field in   is determined by (1). 

However, e  remains undetermined in the non-

conductive domain out and we cannot find h there 

directly from (3). This is a complication but note 

that h  in out  should be such that 

outout |= =j h 0 . We use this condition to find 

out
|h  iteratively as follows.  

        First, we compute =j h , set  

out out

( ) in ,

     in ,






= 



j j
e

j
                 (5) 

where out  is a sufficiently high (see below) 

fictitious resistivity, then use (3) to find in |=h h  

and an initial approximation, 
out

0
out |=h h , in out . 

On the i-th iteration we compute i i=j h , set  

out

1
out e in[ ] |i i+

= +h h Φ j ,                    (6) 

where in
i i=j j  in   and zero in out . Provided 

these iterations converge, 

out out outin| | ( ) |  = = =j h j 0  as desired.   

      The operator Φ  can be expressed by means of 

convolutions in 3R , 

* *

[ ] * *

* *

z y y z

x z z x

y x x y

j G j G

j G j G

j G j G

 −  
 

=  −  
  −  

Φ j . 

 Since the Fourier transform of G  in 3R  is 

3

i 2( ) ( ) d 1/ | |
R

F G G e− = =
k r

r r k , where 

( , , )x y zk k k=k ,  we obtain 

1

2

( ) ( )
i

[ ] ( ) ( ) .
| |

( ) ( )

y z z y

z x x z

x y y x

k F j k F j

F k F j k F j

k F j k F j

−

 − 
  

= −  
  −  

Φ j
k

      (7) 

This expression is not determined for =k 0  but, 

taking into account that 

3 3 e[ ]d [ ( )]d
R R

t= − Φ j r h h r  should be zero at each 

moment in time, for =k 0  we replace 
21/ | |k  in (7) 

by zero.  

 

2.2 Numerical Scheme  
To make this algorithm practical a uniform regular 

grid was defined in a rectangular domain containing 

  and enough empty space around it; the Fourier 

transform and its inverse were replaced by their 

discrete counterparts on this grid and the FFT 

algorithm employed. The spatial derivatives in (3) 

and (4) were also computed in the Fourier space 

with Gaussian smoothing; the smoothing parameter 

was of the order of the grid step. The spatially 

discretized algorithm provided an approximation to 

h  values in the grid nodes for a given set of h  node 

values; the resulting system of ordinary differential 

equations was integrated in time by the ode23 solver 

of Matlab.  

We note that the role of fictitious resistivity out  

is to suppress the stray current only in a thin layer 

near the superconductor boundary; the iterations 

take care of this current in the rest of out .  

Moreover, our computations showed that much 

faster convergence of iterations (6) is achieved if 
0
outh is taken as outh  from the previous time step and 

(5) is used only for defining inh via (3). 

In our simulations the virgin initial state was 

assumed and the power 30n = . We used 

dimensionless variables, 

0

0 c c

( , , )
( , , ) , ,

, , ,

x y z t
x y z t

l t

e j j l

   = =

  = = =
e j h

e j h

           (8) 

where l  is the characteristic size and 

2
0 0 c 0/t j l e= ; below, the prime is omitted.  

 

2.3  Examples 
Shielding sensitive scientific and medical devices 

from the magnetic field environment is one of the 

promising applications of superconductors. 

Magnetic field concentration by superconducting 

magnetic lenses is the opposite phenomenon based, 

however, on the same properties of 

superconductors: their ideal conductivity and ability 

to expel the magnetic field.  
 
2.3.1 Example 1: Magnetic Shield  

Our first example is a hollow, closed at one end 

superconducting cylinder (Fig. 1); its sizes are taken 

from [7] and scaled in accordance  with (8); see [5] 

for the details of this simulation.  

 
Fig.1: Scheme of the superconducting shield (gray); 

dimensionless units. Black area is the shielded zone. 
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We considered two cases. Case A: the external 

field first grows along the cylinder axis, then in a 

direction perpendicular to it: e (0,0, )t=h  for 

0 t    and e ( ,0, )t  = −h  for 2t    with 

0.09 = . Case B: same variations in the inverse 

order, e ( ,0,0)t=h  for 0 t    and e ( ,0, )t = −h  

for 2t   . To illustrate the shielding 

performance, we compared the applied field 

magnitude e| |h  with the mean magnitude | |h  of 

the magnetic field inside the "shielded zone" defined 

as a disk, co-axial to the cylinder (Fig. 1). Because 

the cylinder is short, fields perpendicular to its axis 

penetrate the shielded zone much easier than a field 

parallel to this axis, see Fig. 2.  

 
Fig.2: Shielding performance, different variations of 

the external field: left - case A, right - case B. 

Dashed line - the applied field magnitude, solid line 

- the average magnetic field magnitude in the 

shielded zone. 

 
We present also the calculated distributions of 

the magnetic field and current density for the case A 

at t =  and 2t =  (Fig. 3). 

 

2.3.2 Example 2: Magnetic lens 

The magnetic lens in our second example (Fig. 4) 

is geometrically similar to those studied 

experimentally in  [8]: it is a superconducting 

cylinder with a coaxial biconical hole and a narrow 

slit to prevent the shielding circumference current; 

see [5] for a detailed exposition. The applied field 

was parallel to the cylinder axis, e (0,0, )t=h , 

0 0.2t  . Partially expelled from the 

superconductor, magnetic field was concentrated in 

the central part of the lens. The average field 

magnitude in the central region  0.2, | | 0.33r z   

was about twice higher than the applied field for 

e| | 0.05=h  and 1.6 times higher for e| | 0.2=h   (Fig. 

5). In dimensional units for, e.g., a lens with the 

outer diameter 30 mm and the critical current 

density 
85 10  A/m2, the field of 0.473 T is 

amplified twice and of 1.89 T – 1.6 times. The 

computed current density and magnetic field 
distributions are presented in Fig. 6 for 0.1t =  and 

0.2t = . 

 
Fig.3: Magnetic shield simulation (case A). 

Magnitudes of the current density (left) and 

magnetic field (right) in the cross-sections 0x =  

and 0y = . 

 
Fig.4: Scheme of the magnetic lens (gray) and the lens 

central region (black). 

 

 

3 Stacks of Thin Superconducting 

Films 
Progress in fabrication and commercial 

availability of high temperature coated conductors 

made stacks of such conductors an attractive 

alternative to bulk superconductors for trapping 
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strong magnetic fields, magnetic levitation, etc. 

Advantages of coated conductors are their high 

critical current density, better mechanical and 

thermal stability due to the metal substrate layers, 

higher degree of uniformity, and flexibility in 

adaptation to different configurations. 

 

  
Fig.5: Dashed line - the applied field magnitude, 

solid line - the average magnetic field magnitude in 

the magnetic lens central region. 
 

 
Fig.6: Magnetic lens. Magnitudes of the current 

density (left) and magnetic field (right) in the cross-

sections  0, 0,x z= =  and 2z = − . 

Stacks of coated conductors experience much 

weaker crossed field demagnetization; this property 

is important for the superconducting magnets in 

electric machines. 

Typically, the width to thickness ratio of the 

superconducting layer in coated conductors is 

between 1000 and 10000, which justifies modeling 

using the infinitely thin film approximation. 

 

3.1 Stream Function Formulation 

Let us consider a stack of N  thin equidistant 

superconducting films, 

 ( , , ) : ( , ) , , 1,..., ,m mx y z x y z md m N = =  

where
 d  is the distance between films. For 

simplicity, we assume that the domain 
2R  is 

simply connected, the normal to films z-component 

of the applied magnetic field is uniform,
 

e, e, ( )z zh h t= , and in all films the same power law,  

1

0

c c

| |
(| |) ,

n

m m
m m m e

j j


−

 
= =  

 

j j
e j j           (9) 

holds for the sheet current densities, mj , and the 

parallel to films electric field components, me . As 

above, 
4

0 10e −= V/m, the sheet critical current 

density cj  and the power n  are assumed constant. 

Since 0m =j  in   and the normal component 

of mj  on the domain boundary   is zero, there 

exist stream functions mg  such that m mg= j  

(i.e. , ,y,m x y m m x mj g j g=  = − ) and | 0.mg =  

Let us extend mg
 

by zero to the outer domain 

2

out \ ( )R =    and define 

( )
1

2 2 2( ) 4 ( )m lG r d m l
−

− = + −r , where 

( , )x y=r  and | |r = r . By the Biot-Savart law 

( )

, e,
1

1

1

( ) ( , )

*

* * ,

N

m z z m l l
l

N

m l l
l

N

x m l x l y m l y l
l

h h G t d

G g

G g G g

−
= 

−
=

− −
=

  − =  −

=  

= −   +  

 





r r j r r

 

where x y y xu u =  −u  is the scalar 2D curl of 

a vector function, ,m zh  is the z-component of 

magnetic field on the m -th film, and *  denotes the 

2D convolution. Applying the Fourier transform 
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2

i[ ] ( ) d
R

F f f e−= 
kr

r r  we obtain 

2
, e, 1

[ ] [ ],
N

m z z m l ll
F h h k F G F g−=
 − =    where

2 2 2
x yk k k= + . For 0k   this yields a linear 

algebraic system for [ ]lF g , 1,...,l N= : 

, e,2
1

1
[ ] [ ] [ ].

N

m l l m z z
l

F G F g F h h
k

−
=

= −      (10) 

Since  ( )
1 | |[ ]( ) 2 kd m l

m lF G k e
− − −

− =k (see [6]),  we 

rewrite (10) as 

, , e,
1

2
( ) [ ]( ) [ ]( ),

N

m l l m z z
l

A k F g F h h
k=

= − k k  

where | |
, ( ) m l

m lA k q −=  with ( ) kdq k e−= . For 0k   

the symmetric N N  matrix A  has a simple three-

diagonal inverse:  
1

2

2

2

2

( )

1 0 ... 0

1 0 ... 0

0 1 ... 01

...1

0 ... 0 1

0 ... 0 1

k

q

q q q

q q q

q

q q q

q

− =

− 
 
− + − 
 − + −
 

−  
 − + −
  − 

A

. 

Hence, if the functions e,[ ]m zF h h−  are known, the 

functions [ ]mF g  remain undetermined only for 
0k = . These values correspond to additive 

constants in the real space and we express

1( ,..., )T

Ng g=g  as  

1 12
[ ] : ( ) [ ] ( )z zF k F t

k
 − − 

= = − 
 

g Φ h A h C  (11) 

where 1, e, , e,( ,..., )T

z z z N z zh h h h = − −h ,  
12
( )k

k

−
A  

is replaced by the zero matrix for 0k = , 

1( ,..., )T

NC C=C , and at each moment in time the 

shifts ( )mC t  are chosen to satisfy the conditions 

out

d 0mg


= r . Differentiating (11), we obtain 

1 12
[ ] ( ) [ ]z zF k F

k
 − − 

= = − 
 

g Φ h A h C   (12) 

with C  such that 
out

d


= g r 0 . We can now 

formulate an evolutionary problem for g . Let all 

stream functions mg  be known at time t . Then we 

also know the sheet current densities m mg= j

and can find the parallel to films electric field 

components in each film using (9). By the Faraday 

law we have 

 1 1

, 0 0 (| |)m z m m mh g g  − −= −  =   e . 

This does not determine the evolutionary problem 

via (12) yet because the electric fields me  and, 

hence, ,m zh  and
 z h  in out  remain unknown. 

However, in the outer domain
 

g  should remain 

zero, which is an implicit condition for 
out

|z h :  

equation (12) should hold with
out

| . =g 0  This 

condition can be resolved iteratively. It may be 

noted that the known formulation for a single film 

magnetization problem is obtained for 1N =  in the 

d →+  limit. 

 

3.2. Iterations  

To find the derivative g  for a given
 

g , we find
 

m mg= j  for each film and set, as in the bulk 

case,  

out out

(| |) in ,

in

m m

m

m






= 



j j
e

j
 

with a sufficiently high constant fictitious resistivity 

out . Then we define 
(0) 1

, 0m z mh −= − e , 

(0) (0)

, , e,m z m z zh h h = − , and set an initial approximation 

(0) (0)[ ]z=g Φ h . On the i-th iteration, we improve 

( )

,

i

m zh  by subtracting the time derivative of the field 

induced at z md=  by the stray current outside the 

film. For normal to the m -th film component of this 

field the derivative can be presented as 
1

,out( / 2) [ ]mF k F g−    , where  

,out

out

0 in ,

in .
m

m

g
g


= 


 

The values of ,m zh
 
in the film itself are determined 

by the Faraday law and for all m  we update ,m zh

only in out setting  

out

out
out

( 1)

,

( ) 1 ( ) ( )

, ,out

|

| ( / 2) [ ] ,

i

m z

i i i

m z m m

h

h F k F g D

+



−




=

 − − 
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ensure the conditions 
( )i

mDwhere the shifts 

relaxation  is a and  ( )2

(i 1)

, e, d 0m z z
R

h h+ − = r

( 1) ( 1)[ ].i i

z+ +=g Φ h parameter, then find 

      Provided these iterations converge, 
( )

,out

i

mg
 
tend 

to zero for all m  as desired.  

 

3.3 Implementation 
The film stack computations were performed on 

a regular grid defined in a rectangle containing and 

several times larger than  . As in the bulk case, the 

convolutions and derivatives were computed in the 

Fourier space using the FFT. The fictitious 

resistivity out
 
should suppress currents only in a 

thin boundary layer and, usually, does not need to 

be very high. The simulations (see [6]) were 

performed in dimensionless variables with the 

relaxation parameter   proportional to /d l , where 

l is the characteristic film size. A faster convergence 

of iterations was obtained with 
out

(0)

, |m zh  taken as 

out, |m zh  from the previous time step. The ordinary 

differential equations for the grid values of g  were 

integrated in time by the Matlab solver ode23. 

 

3.4 Homogenization 
Employed in applications are often stacks of 

several hundreds of densely packed coated 

conductors. In such cases an accurate solution to 

magnetization problems can be obtained using 

homogenization and transition to the anisotropic 

bulk model [9-11]. The stack of N films with the 

distance d between films and the current-voltage 

relation (9) is replaced by a cylindrical bulk 

superconductor of the height H Nd=  and cross-

section  , characterized by the infinite resistivity in 

the z-axis direction and the power current-voltage 

law for the parallel to xy-plane component e  of the 

electric field and the bulk current density J . Here 

the critical current density c c /J j d=  equals the 

film sheet critical current density averaged over the 

layer of thickness d . 
1

c

c c

| |
n

e
J J

−

 
=  

 

J J
e  

 

For the fixed parameters cJ  and H  the 

anisotropic bulk model solution is the limit of 

solutions to stack problems with the sheet critical 

current densities
 c c c /N

Nj J d J H N= =  as the 

number of films N tends to infinity. Using several 

different finite element methods, magnetization of 

such initially non-magnetized anisotropic bulk 

10 10 1   mm3 superconductor was simulated in 

[2, 12] for the critical current density 
810cJ = Am-2, 

the power 25n = , and the sinusoidal applied field 

e,zh  with the amplitude 100 mT and frequency 50 

Hz. Presented in these works are, in particular, the 

current density distribution at the first peak of the 

applied field, 0.25t T= , where T is the period, and 

the AC loss, 0 e,dz zQ m h= −  , computed for the 

cycle 0.25 1.25T t T  ; here zm  is the z-

component of the magnetic moment. The loss values 

obtained by different finite element methods in 

[2,12] varied from 3.45 to 3.50 mJ, the 

computations on a personal computer took from 1.7 

to 6 days [12].  

Since it turned difficult to solve this benchmark 

problem using the 3D FFT-based method for an 

anisotropic superconductor having a resistivity in z-

direction fully suppressing the corresponding 

current component, we used a different approach, 

suggested for two-dimensional problems (stacks of 

long strips) in [11]. As was noted there, if the ratio 

of the film distance d  to the half of 

superconducting strip width is less than 0.05, the 

difference between the AC losses in a stack and the 

corresponding anisotropic bulk superconductor does 

not exceed 2%. Hence, instead of the full 

homogenization and transition to the anisotropic 

bulk model, it is possible to replace the densely 

packed N -film stack by a stack with a lower 

number of tapes,
 0N N , the same height 

0 0H dN d N= = , and the new sheet critical current 

density c,0 0 0 c /cj d J d j d= = .  

For the stack benchmark problem [2,12], the 

ratio of stack height to the film half-side a  is 0.2. 

With only 4 films we already have / 0.05d a =  and 

so even the 4-film stack should be a good 

approximation to the benchmark problem. Since the 

normal to film component of the magnetic moment 

can be conveniently expressed via the stream 

function, 
1

d d
2

zm g
 

=  = r j r r , the AC loss 

per period for the film stacks was calculated as 
1.25

e,

10.25

d d

T N

z l

lT

Q h g t
= 

 
= −  

 
  . 
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Our computations on a similar personal computer 

were faster than those in [12]; the computed AC 

losses coincided with those in other works within 1-

2%  (see Tab. 1).  

 
Table 1. Computation results 

N of films Q , mJ 
Computation 

time, hours 

4 3.43 9 

6 3.51 23 

 

We present also the distributions of calculated 

sheet current densities mj  in a 6-film stack (Fig. 7) 

and the approximation to the current density J in the 

anisotropic bulk, obtained for this stack as 

/m d=J j  at mz z=  (Fig. 8). The latter 

distribution is very similar to those in [2,12]. 

 

 
Fig.7: Scaled sheet current densities ,0| | /m cjj  in 

three upper films of a 6-film stack at the peak of the 

applied field. 

 

 
Fig.8: Current density at the peak of applied field: 

solution of the anisotropic bulk benchmark problem 

computed using the 6-film stack approximation. 
 

4 Conclusion 
Numerical solution of highly nonlinear 3D 

magnetization problems in type-II superconductivity 

is currently an active area of research. The FFT-

based method considered in our work is, for such 

problems, an alternative to more popular finite 

element methods. Our simulations showed that the 

FFT-based method is efficient and general: it can be 

successfully employed not only to solving the thin 

film magnetization problems but also for modeling 

bulk superconductors of realistic geometries and 

thin film stacks. The method is simpler and, at least 

in some cases, faster than its recently developed 

finite element competitors. 

Although in our examples we used only a power 

current–voltage relation with constant power and 

critical current density, it can be replaced by a more 

realistic field-dependent relation. 
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